loader

Mis on insuliini eest vastutav organismis?

Insuliini peamine roll organismis on glükoosi taseme kontrollimine veres ja hüperglükeemia vältimine. Lisaks sellele on vajalik olulised metaboolsed protsessid, näiteks lipiidide süntees ja ensümaatilise aktiivsuse reguleerimine. Insuliini puudumine inimkehas viib kõigi ainevahetusprotsesside ja raske patoloogia - diabeedi - rikkumiseni.

Mis on insuliin?

Insuliin on hormoon, mis vastutab raku energiavarustuse eest.

See on valkhormoon molekulmassiga umbes 6000. Dalton. Molekul sisaldab kahte polüpeptiidahelat, mis sisaldavad aminohappejääke. Hormooni süntees ja sekretsioon stimuleerib vere glükoosisisaldust. Tavaline kontsentratsioon kehas vastavalt vanusele on esitatud tabelis:

Tervetel inimestel on insuliini tootmine ja vabanemine tihedalt reguleeritud protsess, mis võimaldab organismil tasakaalustada metaboolseid vajadusi, mis põhinevad vererakkude stagnatsioonil glükoosisisaldusel. Glükoos on keha energiaallikas. Kuid kui glükoosisisaldus on rohkem kui vajalik, siis on selle normaliseerimiseks vajalik insuliin, mis hakkab kohe intensiivselt vabanema. Kuid niipea, kui glükoosi tase normaliseerub, peatub selle tootmine.

Kus see on toodetud?

Hormooni toodab pankreas - seedetrakti organ. Nääre koosneb eksokriinsest kudedest (95%), mis toodab seedimist vajavaid ensüüme. Ülejäänud 5% on hõivatud endokriinsete rakkudega (A, B, D, PP). Nende põhifunktsiooniks on süsivesikute, valkude ja rasvade metabolismi eest vastutavate hormoonide sekretsioon. Endokriinsete rakkude kogunemist nimetatakse pankrease saarteks või Langerhansi saarteks.

Täpsemalt, B-rakud vastutavad insuliini tootmise eest. Teatud stimulatsiooniga hakkavad B-rakud tootma hormooni, misjärel see levib pankreas tungivate väikeste veresoonte hulgast. Hormooni biosüntees on väga keeruline protsess ja see toimub kahes etapis. Algselt toodavad B-rakud inaktiivset prohormoni proinsuliini. Seejärel viiakse proinsuliin endopeptidaasidega (peptiidid siduvad ensüümid), mis asendab C-peptiidi insuliini moodustamiseks.

Mida teeb insuliin?

Hormooni insuliin täidab järgmisi funktsioone:

  • Kontrollib glükoosisisaldust maksa ja lihasrakkudes.
  • Ainus hormoon, mis vähendab glükoosi taset ja tagab selle töötlemise maksa säilitatud glükogeeni.
  • Vähendab rasvade lagundavate ensüümide aktiivsuse suurenemist, et kasutada seda alternatiivse energiaallikana.
  • Aitab organismil rakke aminohapete assimilatsioonil.
  • Kiirendab fosfaadi, magneesiumi ja kaaliumi ioonide ülekandmist rakkudesse.
  • Mõjutab valkude sünteesi ja küpsemise protsessi.
  • Aitab DNA reduplication.

Insuliin vastutab kõigi ainevahetuse vormide eest organismis, kuid selle peamine funktsioon on seotud süsivesikute ainevahetusega.

Mõned keharakud on kohandatud võtma glükoosi ilma insuliinita, kuid enamik rakke nõuavad selle vabanemist verre kogu aeg. Kõnealusest hormoonist sõltuvad kõige enam lihas- ja rasvkuded, mis vastutavad keha põhifunktsioonide eest - hemodünaamika (vereringe), hingamine, liikumine jne. Insuliinist sõltuvate kudede rakumass on 2/3 kogu keha massist.

Mis on insuliini sünteesi puudumine ohtlik?

Kuna hormoon reguleerib peamisi ainevahetusprotsesse, põhjustab insuliini sünteesi puudumine patoloogilist seisundit, mida nimetatakse suhkruhaiguseks. Hormooni sekretsiooni probleemid, mis on tingitud B-rakkude hävitamisest, põhjustavad keha insuliinipuuduse lõpetamiseks ja põhjustab 1. tüübi diabeedi tekkimist. Kui B-rakud toodavad seda hormooni, kuid selle kogus ei ole piisav suhkru (suhteline defitsiit) vähendamiseks hormonaalset ainetundlikkuse vähenemise tõttu, siis see olukord mõjutab II tüüpi diabeedi arengut.

Hormooni insuliin ja selle roll kehas

Inimese endokriinse (hormonaalse) süsteemi esindab hulgaliselt hormoonide sekreteerivaid näärmeid, millest igaüks täidab olulisi funktsioone kehas. Enim uuritud on insuliini. See on hormoon, millel on peptiid (toiteväärtus), st see koosneb mitmest aminohappe molekulist. Hoolib hormooni peamiselt veresuhkru taseme vähendamiseks, transportides seda kogu inimkeha kudedesse. PubMed'i andmebaasi andmetel küsisid netisaajad, milline insuliin on ja milline on tema osa organismis, ligikaudu 300 tuhat korda. See näitaja on absoluutne rekord hormoonide hulgas.

Insuliin sünteesitakse pankrease saba endokriinsetes beeta-rakkudes. Seda piirkonda nimetatakse Langerhansi saariks selle teadlase auks, kes seda avastas. Vaatamata hormooni olulisusele toodab see ainult 1-2% keha.

Insuliin sünteesitakse vastavalt järgmisele algoritmile:

  • Esialgu toodetakse preproinsuliini pankreas. Ta on peamine insuliin.
  • Samal ajal sünteesitakse signaalpeptiid, mis toimib preproinsmuliini juhina. Ta peab tarnima insuliini aluse endokriinsetesse rakkudesse, kus see muundub proinsuliiniks.
  • Valminud eelkäija jääb endiselt sisikondlikesse rakkudesse (Golgi aparaadis) pikaks ajaks, et täielikult küpsetada. Selle etapi lõppedes jagatakse see insuliiniks ja C-peptiidiks. Viimane neist peegeldab kõhunäärme endokriinset aktiivsust.
  • Sünteesitud aine hakkab suhtlema tsinkioonidega. Selle eemaldamine beeta-rakkudest inimese veres toimub ainult siis, kui suhkru kontsentratsioon suureneb.
  • Antagonisti glükagoon võib häirida insuliini sünteesi. Selle tootmine toimub Langerhansi saarte alfa-rakkudes.

Alates 1958. aastast mõõdetakse insuliini rahvusvahelistes ühikutes (MED), kus 1 ühik on 41 μg. Inimese insuliininõuded kuvatakse süsivesikute ühikutes (UE). Hormoonide määr vanuse järgi on järgmine:

  • Vastsündinud:
    • 3-ühikulise tühja kõhuga;
    • pärast sööki kuni 20 ühikut.
  • Täiskasvanud:
    • tühja kõhuga vähemalt 3 ühikut;
    • pärast sööki mitte rohkem kui 25 ühikut.
  • Eakad inimesed:
    • tühja kõhuga alates 6 ühikut;
    • pärast sööki kuni 35 ühikut.

Insuliini molekul sisaldab 2 polüpeptiidahelat, mis sisaldavad 51 monomeerse valguühiku, mis on kujutatud aminohappejäägina:

  • A-ahel - 21 link;
  • V-kett - 30 linki.

Need ahelad on ühendatud 2-di-sulfiidiga, mis läbivad alfa-väävlit sisaldava aminohappe (tsüsteiin) jääke. Kolmas sild lokaliseerib ainult A-ahelaid.

Hormooni roll kehas

Insuliin mängib olulist rolli ainevahetuses. Tänu selle mõjule saavad rakud energiat ja keha säilitab erinevate ainete lahutamise ja küllastumise tasakaalu.

Hormooni väikse olemuse tõttu ei saa toidust toidust täiendada. Vastasel juhul lagundatakse insuliin, nagu iga teine ​​valk, ilma kehasse avaldamata.

Miks on insuliini vaja, saate seda mõista, vaadates oma funktsioonide nimekirja:

  • paranenud glükoosipinna tungimine rakumembraanide kaudu;
  • glükolüüsi ensüümide aktiveerimine (glükoosi oksüdeerimine);
  • glükogeeni tootmise stimuleerimine maksas ja lihaskoes;
  • rasvade ja valkude tootmise suurenemine;
  • vähendades glükogeeni ja rasva rikkuvate ainete mõju.

Insuliini loetletud funktsioonid on hädavajalikud. Vaadake allpool toodud teiseseid sihte.

  • aminohapete rakuline kogunemine;
  • suurendada kaltsiumi ja magneesiumi hulka rakkudes;
  • valgusünteesi stimuleerimine;
  • mõju estrite moodustumisele.

Glükoosi transportides organismi rakkudesse annab insuliin keha vajaliku energiaga. See on ainus hormoon, mis alandab veresuhkru taset. Selline laiaulatuslik mõju võimaldab järgmisi tagajärgi:

  • Lihaste kasv Insuliini roll inimese kehas ei piirdu põhifunktsioonidega. Kogu selle mõju all olev lihaskoe hakkab suurenema. Selle põhjuseks on hormooni mõju elusrakkude mittemembraanilistele organismidele (ribosoomid). Nende mõju sisuliselt on lihaste kasvu jaoks oluline valgu süntees. Sellepärast kasutavad kulturistid sageli proteiinkreve, mis on selle kunstlik vaste.
  • Glükogeeni tootmine. Et mõista, miks teil on vaja insuliini kehas, saate vaadata ensüümide süsteemi, mis oli hormooni mõju all. Selle tegevus on oluliselt tõhustatud. Eriti kui vaatate glükogeeni sünteesi. Hoolimata asjaolust, et insuliin on selle antagonist, on nende tootmine omavahel seotud ja seda paremat ainet sünteesitakse, seda rohkem on teine.

Kuidas hormoon töötab?

Insuliini omaduste uurimisel peate tähelepanu pöörama selle toimemehhanismile. See põhineb sihtmärkrakkude mõjutamisel, mis vajavad glükoosi. Kõige nõudlikum on tema rasv ja lihaskoe. Vähem oluline on ka suhkru maks. Sihtrakud tarbivad vajadusel glükoosi ja hoiavad selle ülejääki. Varud on esitatud glükogeeni kujul. Energia näljahetkel hakkab glükoos sellest vabanema ja läheb verdesse, kus tsükkel kordub.

Insuliini ja glükoosi tasakaalu veres annab selle antagonisti glükagoon. Kui ühe hormooni tootmisel tekib ebaõnnestumine, tõuseb see isik (hüperglükeemia) või langeb (hüpoglükeemia) suhkru tase. Ükskõik milline neist tüsistustest võib põhjustada kohutavaid tagajärgi, sealhulgas kooma ja surma.

Mõju inimeste tervisele

Suure hulga insuliini poolt põhjustatud suhkru kontsentratsiooni langus on hüpoglükeemia. Inimesel esineb tugev nõrkus, isegi teadvuse kadu. Rasketel juhtudel on surm ja hüpoglükeemiline kooma võimalik. Seevastu on hüperglükeemia, mis on põhjustatud hormooni madalast kontsentratsioonist või selle halvast seeduvusest. See avaldub diabeedi kujul. Haigus on 2 tüüpi:

  • Esimest tüüpi nimetatakse insuliinist sõltuvaks, sest inimene vajab insuliini süstimist. Pankrease düsfunktsiooni tõttu on haigus. Ravi hõlmab hormoonide süstimist ja elustiili parandamist.
  • Teist tüüpi nimetatakse insuliinist sõltumatuks, kuna hormooni toodetakse kõhunäärme poolt, kuid ebapiisavates kogustes või sihtrakud on vähem arusaadavad. Haigus on iseloomulik vanematele kui 40-aastastele inimestele, eriti neile, kes põevad ülekaalulisust. Ravi sisuks on ravimite võtmine, mis parandavad hormooni arusaamist ja elustiili paranemist.

Mis on insuliin, selle mõju kehale ja viimastele arengutele

Kõik insuliini kohta. Milline funktsioon on inimesele kehas täidetav insuliin ja kuidas see ravim saab nüüd toime tulla sellise kohutava haigusega nagu suhkurtõbi.

Mis on insuliin ja miks on see inimese jaoks nii vajalik? Sellele küsimusele vastatakse allpool olevas artiklis toodud tähenduses.

Ladina sõna Insula (saar) tuletatud insuliin on teatud valgusisaldus, mida sünteesivad teatud kõhunäärme rakud või pigem selle koosseisud. Meditsiinilises terminoloogias nimetatakse neid Langerhansi saarteks - Sobolevi.

Sellel kõhunäärme hormoonil on tohutult mõju kõik kudedes esinevad ainevahetusprotsessid, mis on omane inimkehale. Peptiidide seeriate hulka kuulub kvalitatiivselt küllastunud inimese rakud koos kõigi vajalike ainetega, kaaliumi, erinevate aminohapete ja loomulikult glükoosi ülekandmiseks veresüsteemi. Kuna inimkehas on tänu glükoosile säilitatud süsivesikute teatud tasakaal.

Siin on, kuidas see juhtub: kui toit imendub inimkehasse, suureneb glükoosi kogus, mis mõjutab aine sisaldust veres ja selle suurenemist.

Keemiline ja struktuurivalem

Selle aine konstruktiivne toime on seotud selle molekulaarstruktuuriga. See tekitas teadlaste huvi selle hormooni avastamise algusest peale. Kuna selle sünteesitud aine täpne keemiline valem võimaldaks seda isoleerida keemiliste vahenditega.

Loomulikult ei ole selle struktuuri kirjeldamiseks piisav ainult keemiline valem. Kuid on ka tõsi, et teadus ei seisa jätkuvalt ja täna on selle keemiline olemus juba teada. Ja see võimaldab teil parandada kõiki uusi ja uusi ravimeid, mille eesmärk on diabeedi ravimine inimestel.

Struktuur, selle keemiline algus hõlmab aminohappeid ja on peptiidhormoon. Selle molekulaarsel struktuuril on kaks polüpeptiidahelat, mille moodustumisel on kaasatud aminohappejäägid, mille koguarv on 51. Need ahelad on ühendatud disulfiidsildadega, mida tavaliselt määratletakse kui "A" ja "B". Rühmal "A" on 21 aminohappejääk, "B" 30.

Erinevate liikide näidete struktuur ja tõhusus on üksteisest erinevad. Inimestel on see struktuur enam sarnane ahvi kehas asuvaga ja see, mis on varustatud siga. Sigade ja inimese struktuuride erinevused on ainult ühes B-ahelaga asuvas aminohappejääkis. Järgmine sarnane struktuuriga on bioloogilised liigid pull, millel on erinev struktuur kolme aminohappejäägiga. Imetajate puhul erinevad selle aine molekulid aminohappejääkide hulgast veelgi.

Funktsioonid ja milline hormoon mõjutab

Kui toit on alla neelatud, ei ole peptiidhormoon, mis on peptiidhormoon, seeditav nagu mis tahes muu sool, vaid täidab palju funktsioone. Niisiis, mis muudab selle aine, peamiselt insuliini, mängib glükoosi kontsentratsiooni langetamist veres. Ja ka rakumembraanide läbilaskvuse suurendamiseks glükoosiks.

Kuigi see täidab insuliini ja teisi võrdselt olulisi funktsioone kehas:

  • See stimuleerib glükogeeni väljanägemist maksas ja lihaskonstruktsioonis - glükoosi mingis vormis loomarakkudes;
  • Suurendab glükogeeni sünteesi;
  • Vähendab teatud ensümaatilist aktiivsust, rasvu ja glükogeene;
  • See võimaldab insuliinil suurendada valkude ja rasvade sünteesi;
  • Hoiab teiste inimeste süsteemide kontrolli ja mõjutab rakkude poolt aminohapete nõuetekohast vastuvõtmist;
  • Supresseerib ketooni kehade välimust;
  • Supresseerib lipiidide lagunemist.

Insuliin on hormoon, mis reguleerib süsivesikute ainevahetust inimorganismis. Tema roll valgusisaldusena, kui ta siseneb verd, on veresuhkru taseme langus.

Inimesele põhjustatud insuliini sekretsiooni häire, mis on põhjustatud beetarakkude lagunemisest, põhjustab tihti täieliku insuliinipuuduse ja 1. tüüpi diabeedi diagnoosi. Selle aine koostoimete rikkumine koele põhjustab II tüüpi suhkurtõve tekkimist.

Lõhn

Mida see aine lõhnab? Diabeedi sümptom, mis kõigepealt juhib tähelepanu, on atsetooni lõhn suust. Kirjeldatud hormooni puudulikkuse tõttu ei tungi glükoos rakkudesse. Seoses sellega, kuidas rakud hakkavad tõelist nälga. Ja kogunenud glükoos hakkab moodustama ketooni kehasid, mille tõttu atsetooni lõhn nahas ja uriinis suureneb. Seetõttu, kui selline lõhn ilmneb, peate kohe nõu pidama arstiga.

Selle aine identifitseerimine ja tootmine 20. sajandil diabeediravimite kujul andis paljudele inimestele võimaluse mitte ainult pikendada oma elu sellise haigusega, vaid ka seda täielikult nautida.

Hormooni moodustumine kehas

Ainult B-rakud vastutavad selle aine tootmise eest inimkehas. Hormooni insuliin tegeleb suhkru reguleerimisega ja rasvaprotsesside mõjutamisega. Kui need protsessid on häiritud, tekib diabeet. Sellega seoses on teadlastel probleeme sellistes valdkondades nagu meditsiin, biokeemia, bioloogia ja geenitehnoloogia, et mõista kõiki biosünteesi ja insuliini toimeid organismis nende protsesside edasiseks kontrollimiseks.

Seega, mida "B-rakud" vastutavad - kahe kategooria insuliini tootmiseks, millest üks on vana ja teine ​​arenenud, uus. Esimesel juhul moodustub proinsuliin - see ei ole aktiivne ega täida hormonaalset funktsiooni. Selle aine kogus on määratletud 5% ulatuses ja millist rolli see organismis mängib, pole veel täielikult teada.

Esmalt vabaneb hormooninsuliin "B" -rakkudena, nagu eespool kirjeldatud hormoon, kusjuures ainus erinevus seisneb selles, et see saadetakse hiljem Golgi kompleksi, kus seda edasi töödeldakse. Selle rakulise komponendi sees, mis on ette nähtud erinevate ainete sünteesiks ja akumuleerimiseks ensüümide abil, eraldatakse C-peptiid.

Ja siis, selle tulemusena moodustub insuliin ja selle akumuleerumine, pakendamine sekreteeritavate mahutite paremaks ohutuseks. Siis, kui on vaja insuliini organismis, mis on seotud glükoosi tõusuga, vabastavad B-rakud selle hormooni verre.

Nii moodustab inimkeha kirjeldatud hormooni.

Kirjeldatud hormooni vajalikkus ja roll

Mis on inimkehas insuliin, miks ja missugune on sellele ainele selles roll? Inimkeha korralikuks ja normaalseks tööks on alati soovitav, et iga selle lahtri puhul on vajalik kindel hetk:

  • Küllastunud hapnikuga;
  • Toitained, mida ta vajab;
  • Glükoos.

Nii säilitatakse tema elatusallikad.

Ja glükoos, mis on teatud maksa kaudu toodetud energiaallikana ja mis siseneb kehasse toiduga, vajab abi igas vere rakus sattumist. Selles protsessis moodustab glükoosi insuliin rakkudele sisenemiseks ja mängib rolli teatud dirigendi inimkehas, andes seega transpordifunktsiooni.

Ja muidugi puudumine selle aine sõnalt saatuslikuks organism ja selle rakke, kuid liig võib põhjustada haigusi nagu diabeet 2. tüüpi diabeet, rasvumine, häirida süda, veresooned ja isegi viia arengut onkoloogiliste haiguste raviks.

Eespool öeldut silmas pidades tuleks insuliini taset diabeediga inimesel kontrollida nii sageli kui võimalik, läbida testid ja otsida meditsiinilist abi.

Aine tootmine ja koostisosa

Looduslik insuliin moodustub kõhunäärmes. Käesolevas artiklis kirjeldatud meditsiiniline ravim, mis on oluline ravim, tegi tõelise revolutsiooni nende inimeste vahel, kes kannatavad diabeedi all ja kannatavad selle tõttu.

Mis see on ja kuidas on ravimites toodetud insuliin?

Insuliinipreparaadid diabeetikutele erinevad üksteisest:

  • Puhastamine ühel või teisel viisil;
  • Päritolu (mõnikord insuliin - veis, siga, inimene);
  • Teisese komponendid;
  • Kontsentratsioon;
  • pH-lahus;
  • Uimastite segamise võimalus (lühike ja pikendatud toime).

Insuliini sisseviimine toimub spetsiaalsete süstalde abil, mille kalibreerimist kirjeldatakse järgmise protsessiga: kui patsient võtab 0,5 ml ravimit, võtab patsient 20 ühiku, 0,35 ml võrdub 10 ühikuga ja nii edasi.

Mis ravim on sellest ravimist valmistatud? Kõik sõltub sellest, kuidas see on saadud. See on järgmistest tüüpidest:

  • Loomset päritolu ravim;
  • Biosüntees;
  • Geneetiliselt muundatud;
  • Geneetiliselt muundatud;
  • Sünteetiline.

Kõige pikem kasutatud sealiha hormoon. Kuid selline insuliini koostis, mis ei olnud täielikult looduslike hormoonidega sarnane, ei saanud absoluutset efektiivset tulemust. Seoses sellega on tõeline edu ja mõju diabeedi ravimisel muutunud rekombinantse insuliini toimemehhanismiks, mille omadused on peaaegu 100% rahul diabeediga inimestega, kellel on erinevad vanusekategooriad.

Seega on rekombinantse insuliini toime hea diabeetikutele normaalne ja täidetav elu.

Insuliini funktsioonid ja selle tähtsus inimese keha jaoks

Insuliin on üks tähtsamaid kogu organismi reguleerivaid hormoone. Millised on selle põhifunktsioonid ja milline on selle aine puudumise oht? Milliseid haigusi põhjustab insuliini tasakaalustamatus?

Pankrease ensüümi tüübid

Pankreas sünteesib palju erinevaid bioloogiliselt aktiivseid aineid. See erineb teistest inimkeha komponentidest, kuna see on võimeline endokriinset ja eksokriinset sekretsiooni samaaegselt. Esimest sekreteerijat iseloomustab hormoonide vabastamine otse vereringesse, teise tüübi puhul vabanevad kõik ained peensoole.

Eksokriinne komponent võtab üle 95% kogu pankrease mahust. Kuni 3% langeb pankrease saartele (mida nimetatakse ka Langerhansi saarteks), mis sünteesivad:

Insuliin

See on hormoonvalgu olemus. See reguleerib peaaegu kõigi eluastete ainevahetust. Eelkõige on selle tegevuse eesmärk hoida süsivesikute tasakaalu. See on tingitud suurenenud glükoositranspordist läbi rakumembraani. Käivitatakse insuliini retseptor ja spetsiaalne mehhanism, mis reguleerib membraanivalgu aktiivsuse suurust ja intensiivsust. Need komponendid suunavad glükoosi molekulid rakku ja muudavad selle kontsentratsiooni.

Glükoosi transport insuliiniga on kõige olulisem lihas- ja rasvkoes, kuna need on insuliinist sõltuvad. Nad moodustavad umbes 75% organismi rakumassist ja täidavad selliseid olulisi ülesandeid nagu energia, liikumise, hingamise ja teiste säilitamine ja edasine vabastamine.

Glükoositaseme reguleerimine

Insuliini toime energia ja toitainete ainevahetuse protsessidele on üsna keerukas. Enamiku selle toimete rakendamine sõltub insuliini võimest mõjutada teatavate ensüümide aktiivsust. Insuliin on ainus hormoon, mis reguleerib veresuhkru taset. See on selle põhifunktsioon. Seda toodab:

  • Glükolüüsi toetavate ensüümide töö aktiveerimine (glükoosi molekulide oksüdeerimine, et saada sellest kaks molekuli püroviinhapet);
  • Glükogeneesi pärssimine - glükoosi ja teiste komponentide tootmine maksarakkudes;
  • Suhkru molekulide suurem imendumine;
  • Glükogeeni tootmise stimuleerimine on insuliinihormoon, mis kiirendab glükoosimolekulide polümerisatsiooni glükogeeniga lihaste ja maksarakkude poolt.

Insuliini toime on tingitud valgu retseptorist. See on tervikliku tüübi kompleksne membraanivalk. Valk on valmistatud allüksustest a ja b, mis moodustuvad polüpeptiidahelaga. Insuliin liitub osakesega a, kui see koos on, muutub selle konformatsioon. Sel hetkel muutub osakeste b aktiivsus türosiini kinaasiks. Pärast seda alustatakse kogu reaktsiooniahelat erinevate ensüümide aktiveerimisega.

Teadlased ei ole täielikult uurinud insuliini ja retseptori interaktsiooni protsessi. On teada, et diatsüülglütseroolid ja inositooltrisfosfaat, mis aktiveerivad proteiinkinaasi C, sünteesitakse vahepealsel perioodil. Need ained stimuleerivad tsütoplasmaatiliste vesiikulite inkorporeerimist membraanist membraanist suhkru ülekandevalguga. Vabade glükoosikandjate suurenemise tõttu lahkub rakku rohkem rakke.

Nagu võib aru saada, on glükoositaseme reguleerimine mitmeastmeline ja tehniliselt keerukas protsess. Seda mõjutavad kogu organismi koordineeritud töö ja paljud teised tegurid. Hormoonide reguleerimine on selles dünaamilises tasakaalus üks olulisemaid. Tavaliselt peaks suhkru tase olema vahemikus 2,6 kuni 8,4 mmol / l veres. Selle taseme säilitamiseks (lisaks hüpoglükeemilistele hormoonidele) osalevad ka kasvuhormoonid, glükagoon ja adrenaliin. Need on seotud hüperglükeemiliste hormoonidega.

Need ained stimuleerivad suhkru vabanemist rakulistest toidust. Stress hormoonid ja adrenaliin, sealhulgas inhibeerivad insuliini vabanemist verd. Sel viisil säilitatakse optimaalne tasakaal.

Muud insuliinifunktsioonid

Lisaks glükoosi reguleerimisele on insuliinil mitmeid anaboolseid ja anti-kataboolseid toimeid;

  • Aminohapete ühendite kääritamise tugevnemine rakkudes (eriti valiin ja leutsiin);
  • Katalüüsib DNA replikatsiooni ja proteiini biosünteesi;
  • Ioonide kärje kiirendamine Mg, K, Ph;
  • Rasvhapete produktsiooni katalüüsimine ja nende esterdamine (rasvkoes ja maksakudedes aitab insuliiniühendid glükoosil mobiliseerida rasvana või muunduda triglütseriidiks).
  • Lipolüüsi intensiivsuse vähendamine - rasvhapete molekulide vastuvõtmise protsess veres;
  • Valgu hüdrolüüsi pärssimine - valguühendite dehüdratsioon.

Anaboolsed toimed aitavad kiirendada teatud rakkude, kudede või lihaste struktuuri loomist ja uuendamist. Tänu neile säilitatakse lihasmassi kogus inimese kehas, kontrollitakse energia tasakaalu. Anti-kataboolne toime on suunatud valkude lagunemise ja vere ummistumise inhibeerimisele. See mõjutab ka lihaste ja keha rasva kasvu%.

Mis juhtub organismis, kui insuliini pole

Esiteks on häiritud glükoositransport. Insuliini puudumisel ei aktiveerita suhkruid sisaldavaid valke. Selle tulemusena jäävad veres glükoosi molekulid. Negatiivne mõju avaldub kahepoolselt:

  1. Vere seisund Suures koguses suhkru tõttu hakkab see paksemaks muutuma. Selle tulemusena võivad moodustuda verehüübed, nad blokeerivad verevoolu, toitaineid ja hapnikku ei lange kõik kehasisesed struktuurid. Alustab paastumist ja järgnevat rakkude ja kudede surma. Tromboos võib põhjustada selliseid tõsiseid haigusi nagu veenilaiendid (erinevates kehaosades), leukeemia ja muud tõsised patoloogiad. Mõnel juhul võivad verehüübed tekitada laeval nii palju survet, kui viimane on purunenud.
  2. Vahetusprotsessid raku sees. Glükoos on organismis peamine energiaallikas. Kui see ei piisa, hakkavad kõik intratsellulaarsed protsessid aeglustuma. Seega hakkab rakk lagunema, mitte ajakohastama, mitte kasvama. Pealegi ei muutu glükoos energiavaruaks ja energia puudumise korral ei ole see rasv, mis tarbib rasva, vaid lihaskoe. Inimene hakkab kiiresti kaalust alla saama, muutub nõrgaks ja düstroofiks.

Teiseks häirib anabolismi protsessi. Keha aminohapped hakkavad seedima halvemini ja nende puudumise tõttu ei ole valgu sünteesi ja DNA replikatsiooni jaoks mingit hüppelaud. Erinevate elementide ioonid hakkavad rakkudesse sisenema ebapiisavates kogustes, mille tulemusena muutub energia metabolism muutumatuks. Eriti halvasti see mõjutab lihasrakkude seisundit. Keha rasv liigub halvasti, nii et inimene kaalub.

Need rakulise taseme protsessid mõjutavad peaaegu kohe üldist seisundit. Inimesel on raskem teha igapäevaseid ülesandeid, ta tunneb peavalu ja peapööritust, iiveldust ja võib ka teadvuse kaotada. Tugeva kaalukaotusega tunneb ta loomuliku näljahäda.

Insuliini puudumine võib põhjustada tõsiseid haigusi.

Millised haigused põhjustavad insuliini tasakaalustamatust?

Kõige sagedasem insuliini taseme häirega seotud haigus on diabeet. See on jagatud kahte tüüpi:

  1. Insuliinist sõltuv. Põhjus muutub kõhunääre düsfunktsiooniks, see tekitab liiga vähe insuliini või ei anna seda üldse. Organismis algavad juba kirjeldatud protsessid. I tüüpi diabeediga patsientidel antakse insuliini sissevõtmine väljastpoolt. Seda tehakse spetsiaalsete insuliini sisaldavate ravimitega. Need võivad olla insuliinloomad või sünteetilised omadused. Kõik need vahendid on esitatud süstelahuste kujul. Kõige sagedamini asetatakse süsteks kõht, õla, laba laba või reie esikülg.
  2. Insuliinist sõltumatu. Seda tüüpi diabeedi iseloomustab asjaolu, et pankreas sünteesib piisavalt insuliini ja kuded on selle aine suhtes resistentsed. Nad kaotavad oma insuliinitundlikkuse, mille tagajärjel patsiendil on krooniline hüperglükeemia. Sellises olukorras toimub suhkru taseme reguleerimine toitumise kontrollimisega. Süsivesikute tarbimine väheneb ja võetakse arvesse kõigi tarbitud toidu glükeemilist indeksit. Patsiendil on lubatud süüa ainult aeglaseid süsivesikuid.

On ka teisi haigusi, mille korral diagnoositakse loodusliku insuliini tasakaalustamatust:

  • Maksahaigused (kõik tüüpi hepatiit, tsirroos ja teised);
  • Cushingi sündroom (krooniline ülemäärane hormoon, mida toodetakse neerupealiste koorega);
  • Ülekaal (sealhulgas erineva rasvumuse määr);
  • Insuliinoom (kasvaja, mis vabatahtlikult viskab veres insuliini);
  • Müotoonia (neuromuskulaarne komplekshaigus, mille puhul esinevad tahtmatud liigutused ja lihasspasmid);
  • Ülemäärane kasvuhormoon;
  • Insuliiniresistentsus;
  • Hüpofüüsi funktsiooni halvenemine;
  • Neerupiirkonna kasvajad (häiritud adrenaliini süntees, mis reguleerib suhkru taset);
  • Muud kõhunäärmehaigused (kasvajad, pankreatiit, põletikulised protsessid, pärilikud haigused jne).

Füüsiline ja vaimne ammendumine võib põhjustada ka insuliini kontsentratsiooni rikkumist. Sellised nähtused on õigustatud asjaoluga, et nendel tingimustel kasutab keha homeostaasi taastamiseks palju reservreserve. Sama põhjus võib olla ka passiivne eluviis, mitmesugused kroonilised ja nakkushaigused. Arenenud juhtudel, mis on seotud insuliini sobimatu toimimisega, võib isik esineda insuliinšoki või Somoggia sündroomi (krooniline insuliini üleannustamine).

Nende patoloogiate ravi on suunatud insuliini taseme stabiliseerimisele. Enamasti määravad arstid ravimeid loomse või tehisinsuliiniga. Kui patoloogiline seisund oli tingitud ülemäärasest suhkru sissevõtmisest kehasse, on ette nähtud eriline dieet. Mõnel juhul on ette nähtud hormoonravi. Kui patsiendil on diagnoositud fibroidid, suunatakse patsiendile kirurgia ja keemiaravi.

Järeldus

Insuliin on multiprofiilne peptiidhormoon, mis mõjutab nii rakulisi kui ka üldistatud protsesse. Selle peamine ülesanne on reguleerida süsivesikute tasakaalu. Ta kontrollib ka energia ja materjalide metabolismi organismis erinevates struktuurides. Selle puudumine on täis kõigi nende protsesside rikkumisega.

Insuliini tasakaalustamatus võib põhjustada diabeedi ja mitmeid teisi ohtlikke patoloogiaid. Mõned neist ei saa elada ja elada inimesega. Mõnel juhul võib tõsine puudus ja selle aine sisaldus olla surmav.

Insuliin on noorim hormoon.

Struktuur

Insuliin on proteiin, mis koosneb kahest disulfiidsildadega seotud peptiidi ahelatest A (21 aminohappest) ja B (30 aminohappest). Kokku on küpses iniminsuliinis 51 aminohapet ja selle molekulmass on 5,7 kDa.

Süntees

Insuliin sünteesitakse pankrease β-rakkudena preproinsuliini kujul, mille N-otsas on terminaalne 23-aminohappe signaaljärjestus, mis toimib kogu molekuli juhtimisel endoplasmaatilise retikulaari õõnsusse. Siinkohal lühendatakse terminali jada kohe ja proinsuliini transporditakse Golgi seadmesse. Selles etapis esineb proinsuliini molekulis A-ahel, B-ahel ja C-peptiid (ühendamine on ühendav). Golgi aparaadis on proinsuliin pakendatud sekretoorsetele graanulitele koos hormooni "küpsemise" jaoks vajalike ensüümidega. Kui graanulid liiguvad plasmamembraanile, moodustuvad disulfiidsildad, C-peptiid sideaine (31 aminohapet) lõigatakse välja ja moodustub lõplik insuliini molekul. Valmis graanulites on insuliin kristalses olekus heksameeri kujul, mis koosneb kahest Zn 2+ ioonist.

Insuliini sünteesi skeem

Sünteesi ja sekretsiooni reguleerimine

Insuliini sekretsioon tekib pidevalt ja umbes 50% β-rakkudest vabanenud insuliinist ei ole mingil viisil seotud toidutarbimise või muude mõjudega. Päeval leiab pankreas umbes 1/5 insuliinireservast.

Insuliini sekretsiooni peamine stimulaator on glükoosi kontsentratsiooni tõus veres üle 5,5 mmol / l, maksimaalne sekretsioon ulatub 17-28 mmol / l-ni. Selle stimulatsiooni eripäraks on kahefaasiline insuliini sekretsiooni suurenemine:

  • Esimene faas kestab 5-10 minutit ja hormooni kontsentratsioon võib 10 korda tõusta, pärast seda väheneb selle kogus,
  • Teine faas algab ligikaudu 15 minutiga pärast hüperglükeemia tekkimist ja jätkub kogu selle perioodi vältel, mille tagajärjel suureneb hormooni tase 15-25 korda.

Mida kauem jääb glükoosi kontsentratsioon veres, seda suurem on β-rakkude arv seotud insuliini sekretsiooniga.

Insuliini sünteesi esilekutsumine toimub hetkest, mil glükoos siseneb rakku insuliini mRNA translatsiooniks. Seda reguleerib insuliini geeni transkriptsiooni kasv, insuliini mRNA stabiilsuse suurenemine ja insuliini mRNA translatsiooni suurenemine.

Insuliini sekretsiooni aktiveerimine

1. Pärast glükoosi penetratsiooni β-rakkudesse (GluT-1 ja GluT-2 kaudu) fosforüülitakse heksokinaas IV (glükokinaas, millel on madal afiinsus glükoosi suhtes),

2. Seejärel oksüdeeritakse glükoos aeroobselt, samas kui glükoosi oksüdatsiooni määr sõltub selle kogusest lineaarselt,

3. Selle tulemusena akumuleerub ATP, mille kogus sõltub otseselt ka glükoosi kontsentratsioonist veres,

4. ATP akumulatsioon stimuleerib ioonsete K + kanalite sulgemist, mis viib membraani depolarisatsioonini,

5. Membraani depolarisatsioon viib potentsiaalselt sõltuvate Ca2 + kanalite avanemiseni ja Ca2 + ioonide sissevoolu rakku,

6. Saabuvad Ca2 + ioonid aktiveerivad fosfolipaasi C ja käivitavad kaltsiumfosfolipiidi signaali kandva mehhanismi DAG ja inositooltrifosfaadi (IF3),

7. IF-i välimus3 tsütosoolis avab Ca2 + kanalid endoplasmaatilises retikulumis, mis kiirendab Ca2 + ioonide akumuleerumist tsütosoolis,

8. Ca2 + ioonide kontsentreerimise järsk tõus rakus viib sekreteerivate graanulite ülekandmiseni plasmamembraanile, nende sulandumisega koos sellega ja küpsete insuliini kristallide eksotsütoosiga väljastpoolt,

9. Seejärel kristallide lagunemine, Zn 2+ ioonide eraldamine ja aktiivsete insuliingimolekulide vabastamine vereringesse.

Insuliini sünteesi intratsellulaarse regulatsiooni skeem koos glükoosiga osalemisega

Kirjeldatud juhtimismehhanismi saab reguleerida ühel või teisel viisil mitmete teiste tegurite, näiteks aminohapete, rasvhapete, seedetrakti hormoonide ja teiste hormoonide, närvisüsteemi reguleerimise mõjul.

Aminohapetest mõjutab lüsiin ja arginiin oluliselt hormooni sekretsiooni. Kuid iseenesest ei stimuleerivad nad peaaegu sekretsiooni, nende toime sõltub hüperglükeemia esinemisest, st aminohapped võimendavad ainult glükoosi toimet.

Vabad rasvhapped on ka tegurid, mis stimuleerivad insuliini sekretsiooni, vaid ka ainult glükoosi olemasolul. Kui neil on hüpoglükeemia, on neil vastupidine toime, inhibeerides insuliini geeni ekspressiooni.

Loogiline on insuliini sekretsiooni positiivne tundlikkus seedetrakti hormoonide toimele - inkretinid (enteroglukagoon ja glükoosist sõltuv insulinotroopne polüpeptiid), koletsüstokiniin, sekretin, gastriin, mao inhibiitor polüpeptiid.

Sümotroopse hormooni, AKTH ja glükokortikoidide, östrogeenide, progestiinide pikaajalise kokkupuute korral insuliini sekretsiooni suurendamine on kliiniliselt oluline ja teatud määral ohtlik. See suurendab β-rakkude vähenemise ohtu, insuliini sünteesi vähenemist ja insuliinsõltuva suhkurtõve tekkimist. Seda võib täheldada nende hormoonide kasutamisel ravi ajal või nende hüperfunktsiooniga seotud patoloogiate puhul.

Pankrease β-rakkude närvisüsteemi reguleerimine hõlmab adrenergilist ja kolinergilist reguleerimist. Kõik stressid (emotsionaalne ja / või füüsiline koormus, hüpoksia, hüpotermia, vigastused, põletused) suurendavad sümpaatilise närvisüsteemi aktiivsust ja pärsivad insuliini sekretsiooni α2-adrenoretseptorid. Teisest küljest stimuleerib β2-adrenoretseptor põhjustab sekretsiooni suurenemist.

Insuliini sekretsiooni kontrollib ka n.vagus, mida omakorda kontrollib hüpotalamus, mis on tundlik vere glükoosisisalduse suhtes.

Sihid

Kõiki kudesid, millel on selle retseptorid, võib liigitada insuliini sihtorganismideks. Insuliini retseptoreid leidub peaaegu kõigis rakkudes, välja arvatud närvirakud, kuid erinevates kogustes. Närvirakkudel ei ole insuliini retseptoreid, sest see lihtsalt ei tungi läbi vere-aju barjääri.

Insuliini retseptor on glükoproteiin, mis on konstrueeritud kahest dimeerist, millest igaüks koosneb α- ja β-subühikutest (αβ)2. Mõlemad subühikud on kodeeritud sama kromosoomi 19 geeni ja moodustuvad ühe prekursori osalise proteolüüsi tulemusena. Retseptori poolväärtusaeg on 7-12 tundi.

Kui insuliin seondub retseptoriga, muutub retseptori konformatsioon ja see seostub üksteisega, moodustades mikroagregaate.

Retseptoriga seonduv insuliin kutsub esile fosforüülimisreaktsioonide ensümaatilise kaskaadi. Esiteks autofosforüülitud türosiini jäägid retseptori enda rakusiseses domeenis. See aktiveerib retseptori ja viib seriini jääkide fosforüülimise spetsiaalse valgu, mida nimetatakse insuliini retseptori substraadiks (SIR või sagedamini inglise insuliini retseptori substraadi IRS). Selliseid IRS-i on neli tüüpi - IRS-1, IRS-2, IRS-3, IRS-4. Samuti hõlmab insuliini retseptori substraate Grb-1 ja Shc valke, mis erinevad aminohappejärjestusest IRS-st.

Kaks mehhanismi insuliini toime realiseerimiseks

Edasised üritused jagunevad kahte valdkonda:

1. Fosfoinositool-3-kinaaside aktiveerimisega seotud protsessid - kontrollivad peamiselt valkude, süsivesikute ja lipiidide metabolismi (insuliini kiire ja väga kiire toime) metaboolseid reaktsioone. See hõlmab ka protsesse, mis reguleerivad glükoosivedelike aktiivsust ja glükoosi imendumist.

2. MAP kinaasi ensüümide aktiivsusega seotud reaktsioonid - üldiselt kontrollivad nad kromatiini aktiivsust (insuliini aeglane ja väga aeglane toime).

Kuid selline alajaotus on tingimuslik, kuna raku sees on ensüüme, mis on tundlikud mõlema kaskaadi teede aktiveerimise suhtes.

Fosfatidüülinositool-3-kinaasi aktiivsusega seotud reaktsioonid

Pärast aktiveerimist aitavad IRS-valk ja mitmed abiained valgu kaudu reguleerida p85-d sisaldavat heterodimeerset ensüümi fosfoinositool-3-kinaasi (see nimi pärineb 85 kDa MM-valgest) ja katalüütilise p110 allüksuse membraanist. See kinaas fosforüülib fosfatidüüli inositool-3,4-difosfaadis 3. positsioonil olevaid membraanfosfatidüül-inositooli fosfaate (PIP2) ja enne fosfatidüülinositool-3,4,5-trifosfaadi (PIP3) Peetakse pipipiks3 võib toimida membraananurina muude elementide korral, kui insuliin toimib.

Fosfatidüülinositool-3-kinaasi toime fosfatidüülinositool-4,5-difosfaadile

Pärast nende fosfolipiidide moodustumist aktiveeritakse proteiinkinaas PDK1 (3-phosphoinositiid-sõltuv proteiinkinaas-1), mis koos DNA-proteiinkinaasi (DNA-PK )ga kaks korda fosforüülib proteiinkinaasi B (mida sageli nimetatakse ka AKT1, inglise RAC-alfa seriin / treoniin-proteiinkinaas), mis kinnitatakse membraanile läbi PIP3.

Fosforüülimine aktiveerib proteiinkinaasi B (AKT1), see jätab membraani ja liigub tsütoplasma ja rakutuuma, kus see fosforüülib arvukaid sihtvalke (üle 100 tüki), mis annab täiendava rakulise vastuse:

Insuliinianvu fosfinoisitool-3-kinaasi mehhanism
  • Eelkõige on proteiinkinaasi B (AKT1) toime, mis viib glükoosi transporterite GluT-4 liikumiseni rakumembraanile ja glükoosi imendumisega müotsüütide ja adipotsüütide poolt.
  • ka aktiivne proteiinkinaas B (AKT1) fosforüülib ja aktiveerib fosfodiesteraasi (PDE), mis hüdrolüüsib cAMP-d AMP-le, nii et cAMP kontsentratsioon sihtrakkudes väheneb. Kuna cAMP-i osalusel aktiveeritakse proteiinkinaas A, mis stimuleerib adagistikes insuliinina TAG-lipaasi ja glükogeeni fosforülaasi, surutakse lipolüüsi ja maksa - glükogenolüüs peatatakse.
Fosfodiesteraasi aktivatsioonireaktsioonid
  • Veel üks näide on proteiinkinaasi B (AKT) toime glükogeeni süntaasi kinaasile. Selle kinaasi fosforüülimine seda inaktiveerib. Selle tulemusena ei suuda see glükogeeni süntaasi toimida, fosforüülida ega inaktiveerida seda. Seega mõjutab insuliin glükogeeni süntaasi säilitamist aktiivses vormis ja glükogeeni sünteesi.

MAP kinaasi raja aktiveerimisega seotud reaktsioonid

Selle raja alguses hakkab mängima teine ​​insuliini retseptori substraat - Shc valk (Src (homoloogia 2 domeen, mis sisaldab valku 1), mis seondub aktiveeritud (autofosforüülitud) insuliini retseptoriga. Peale selle mõjutab Shc-valk Grb-valku (kasvufaktori retseptoriga seotud valk) ja sunnib seda retseptoriga liituma.

Samuti sisaldab membraan pidevalt proteiini Ras, mis on SKPga seotud rahulikus olekus. Ras valgu läheduses on "abiaine" valke - GEF (graafiline GTF vahetusfaktor) ja SOS (seitsmeistmeline poeg) ja valgu GAP (eng GTPase aktiveeriv tegur).

Shc-Grb valgu kompleksi moodustumine aktiveerib GEF-SOS-GAP rühma ja viib SK-i asendamiseni GTP-ga Ras valgus, mis põhjustab selle aktivatsiooni (Ras-GTP kompleks) ja signaaliülekande Raf-1 valgu kinaasile.

Kui proteiinkinaas Raf-1 aktiveerub, seob see plasmamembraaniga, fosforüleerib täiendavaid kinaase türosiini, seriini ja treoniini jääkidest ning samuti interakteerib seda samaaegselt insuliini retseptoriga.

Seejärel aktiveeritud Raf-1 fosforülaadid (aktiveerivad) MAPK-K, MAPK proteiinkinaas (inglise mitogeen-aktiveeritud proteiinkinaas, samuti MEK, inglise MAPK / ERK kinaas), mis omakorda fosforüülib ensüümi MAPK (MAP kinaas, või ERK, eng-rakuvälise signaali reguleeritud kinaas).

1. Pärast MAP-kinaasi aktiveerimist kasutab otseselt või täiendavate kinaaside kaudu fosforüülimata tsütoplasma valke, muutes nende aktiivsust, näiteks:

  • fosfolipaasi A2 aktiveerimine viib arahhidoonhappe eemaldamiseni fosfolipiididest, mis seejärel muundatakse eikosanoidideks,
  • ribosomaalse kinaasi aktiveerimine käivitab valgu translatsiooni protsessi,
  • Valgusfosfataaside aktiveerimine põhjustab paljude ensüümide defosforüülimist.

2. Väga laiaulatuslik mõju on insuliini signaali ülekandmine tuumale. MAP-kinaas fosforüleerub iseseisvalt ja seeläbi aktiveerib mitmeid transkriptsioonifaktoreid, tagades teatud geenide lugemise, mis on olulised jagunemiseks, diferentseerumiseks ja muudeks rakulistes reaktsioonides.

MAP-sõltuv rada insuliiniefektideks

Selle mehhanismiga seotud üks valke on transkriptsioonifaktor CREB (eng CAMP vastuseelemendi siduv valk). Inaktiivses olekus on faktor defosforüülitud ja transkriptsiooni ei mõjuta. Signaalide aktiveerimise toimel seondub tegur teatud CRE-DNA järjestustega (eng CAMP-vastuse elementidega), tugevdades või nõrgendades teabe lugemist DNA-lt ja selle rakendamist. Lisaks MAP-kinaasi rajale on faktor ka tundlik valgukinaasi A ja kaltsium-kalmoduliini manustamisega seotud signaaliradade suhtes.

Insuliini toime kiirus

Insuliini bioloogilised mõjud jagunevad arengu kiirusega:

Väga kiire toime (sekundid)

Need mõjud on seotud muutustega transmembraansetes transportsetes:

1. Na + / K + -ATPaasi aktiveerimine, mis põhjustab Na + ioonide vabanemist ja K + ioonide sisenemist rakku, mis põhjustab insuliinitundlike rakkude (välja arvatud hepatotsüütide) membraanide hüperpolariseerumist.

2. Na + / H + -vahetaja aktiveerimine paljude rakkude tsütoplasmaatilises membraanis ja H + -ioonide raku väljumine Na + ioonide eest. See toime on oluline II tüübi diabeedi hüpertensiooni patogeneesis.

3. Ca2 + -ATPaaside membraani inhibeerimine põhjustab Ca2 + ioonide viivituse raku tsütosoolis.

4. Väljuge glükoosi transporterite GluT-4 müotsüütide ja adipotsüütide membraanist ning suurendades glükoosi transportimise mahtu 20-50 korda rakku.

Kiirused (minutit)

Kiire toime on metaboolsete ensüümide ja regulatoorsete valkude fosforüleerimise ja defosforüülimise määrade muutus. Selle tulemusena kasvab tegevus.

  • glükogeeni süntaas (glükogeeni säilitamine),
  • glükokinaas, fosfofrtkukinaas ja püruvaatkinaas (glükolüüs),
  • püruvaatdehüdrogenaas (atsetüül-SkoA saamine),
  • HMG-Scoa reduktaas (kolesterooli süntees),
  • atsetüül-Sko-karboksülaas (rasvhapete süntees),
  • glükoos-6-fosfaadi dehüdrogenaas (pentoosfosfaadi rada),
  • fosfodiesteraasi (hormoonide adrenaliini, glükagooni jt) mobiliseerimise mõju lõpetamine.

Aeglane efekt (minutid tundi)

Aeglane toime on ainevahetuse, kasvu ja rakkude jaotumise eest vastutavate valkude geenide transkriptsiooni muutus, näiteks:

1. ensüümi sünteesi induktsioon

  • glükokinaas ja püruvaatkinaas (glükolüüs),
  • ATP-tsitraadi lüaas, atsetüül-SCA-karboksülaas, rasvhapete süntaas, tsütosoolmalaat dehüdrogenaas (rasvhapete süntees),
  • glükoos-6-fosfaadi dehüdrogenaas (pentoosfosfaadi rada),

2. MRNA sünteesi represseerimine, näiteks PEP-karboksükinaasi (glükoneogeneesi) korral.

3. Suurendab S6 ribosoomi valgu seerumi fosforüleerimist, mis toetab translatsiooniprotsesse.

Väga aeglane efekt (igapäevane)

Väga aeglane toime mõistab mitogeneesi ja rakkude paljunemist. Nende mõjude hulka kuuluvad näiteks

1. Somatomeediini sünteesi suurenemine maksas, sõltuvalt kasvuhormoonist.

2. Suurendage rakkude kasvu ja proliferatsiooni somatomeediini sünergias.

3. Rakkude üleminek G1 faasist rakutsükli S faasi.

Patoloogia

Hüpofunktsioon

Insuliinist sõltuv ja insuliinisõltuv suhkurtõbi. Nende patoloogiate diagnoosimiseks kliinikus kasutatakse aktiivselt stressitesti ja insuliini ja C-peptiidi kontsentratsiooni määramist.

Mis on insuliin - milline organism toodab hormooni, organismi toimemehhanismi ja süstimise näidustusi

Ideaalne hormonaalne tase on inimkeha täieliku arengu aluseks. Üks inimkeha peamistest hormoonidest on insuliin. Selle puudumine või ülejääk viib negatiivsete tagajärgedeni. Suhkruhaigus ja hüpoglükeemia on kaks äärmust, mis muutuvad inimkeha püsivateks ebameeldivateks kaaslasteks, ignoreerides teavet selle kohta, mis insuliini on ja milline peaks olema selle tase.

Hormooni insuliin

Au luua esimene töö sillutas teed avastuse hormooni kuulub Vene teadlane Leonid Sobolev, kes 1900. aastal ettepaneku kasutada kõhunääret tekitama teatud suhkurtõve ravim ja andis idee, et selline insuliini. Edasiseks uurimiseks kulutati rohkem kui 20 aastat ja pärast 1923. aastat algas tööstuslik insuliini tootmine. Tänapäeval on teaduse poolt hästi uuritud hormooni. Ta osaleb rasvade ainevahetuse ja sünteesi eest süsivesikute jaotamise protsessides.

Mis organism toodab insuliini

Insuliini tootvaks elundiks on kõhunääre, kus B-raku konglomeraadid on teadaolevalt teaduslikule maailmale Lawrence'i saarte või Punasteede saarte nime all. Rakkude spetsiifiline mass on väike ja moodustab ainult 3% kõhunääre kogumassist. Insuliini toodetakse beetarakkude poolt ja alamtüüp proinsuliin vabaneb hormoonist.

Mis on insuliini alamtüüp, pole täielikult teada. Sama hormoon, enne lõpliku vormi sisestamist, siseneb Golgi rakukompleksile, kus see rafineeritakse täisvõimsaks hormooniks. Protsess on lõpule jõudnud, kui hormoon pannakse kõhunääre spetsiaalsetesse graanulitesse, kus seda hoitakse kuni inimene sööb. B-rakkude ressurss on piiratud ja see on kiiresti kadunud, kui inimene kuritarvitab lihtsaid süsivesikute toiduaineid, mis on diabeedi põhjus.

Tegevus

Mis on hormooni insuliin - on kõige olulisem ainevahetuse regulaator. Ilma selleta ei satu toidus sisalduv glükoos rakku. Hormoon suurendab rakumembraanide läbilaskvust, mille tagajärjel imendub rakukudest glükoos. Samal ajal soodustab hormoon glükoosi muundamist glükogeeniks - polüsahhariidiks, mis sisaldab energiakogust, mida inimkeha vajadusel kasutab.

Funktsioonid

Insuliini funktsioonid on erinevad. See tagab lihasrakud, mis mõjutavad valkude ja rasvade ainevahetust. Hormoon mängib aju informanti, mis retseptorite järgi määrab vajaduse kiirete süsivesikute järele: kui palju sellest on, aju jõuab järeldusele, et rakud on näljased ja on vaja luua reservid. Insuliini mõju kehale:

  1. Ei lase olulisi aminohappeid lihtsateks suhkruteks jagada.
  2. Parandab valkude sünteesi - elu alust.
  3. Ei lase lihastes valke laguneda, see takistab lihaste atroofiat - anaboolset toimet.
  4. Piirneb ketooni kehade kogunemine, mille ülemäärane kogus on inimeste jaoks fataalselt ohtlik.
  5. Edendab kaaliumi ja magneesiumioonide transporti.

Insuliini roll inimestel

Hormooni puudus on seotud diabeediga. Selle haiguse all kannatavad on sunnitud regulaarselt süstima täiendavaid insuliiniannuseid veres. Teine äärmus on hormooni ülejääk, hüpoglükeemia. See haigus viib vererõhu suurenemiseni ja veresoonte elastsuse vähenemiseni. Suurendab kõhunäärme Langerhansi saarerakkude alfa-rakkude poolt toodetud hormooni glükagooni insuliini sekretsiooni suurenemist.

Insuliinist sõltuvad kuded

Insuliin stimuleerib valkude tootmist lihastes, ilma milleta lihaskoe ei suuda areneda. Rasvkoe moodustumine, mis tavaliselt täidab olulisi funktsioone, on hormoonita võimatu. Diabeediga alustatud patsiendid seisavad silmitsi ketoatsidoosiga - ainevahetushäirega, milles esineb šokk intratsellulaarne nälgimine.

Vereinsuliini tase

Insuliini funktsioonid hõlmavad veres vajaliku glükoositaseme toetamist, reguleerides rasvade ja valkude ainevahetust ning transformeerides toitaineid lihasmassi. Aine normaalse taseme korral esineb järgmist:

  • valkude sünteesi lihaste ehitamiseks;
  • metabolismi ja katabolismi tasakaal säilib;
  • stimuleerib glükogeeni sünteesi, suurendab lihasrakkude vastupidavust ja regeneratsiooni;
  • Aminohapped, glükoos, kaaliumi sisenevad rakkudesse.

Norma

Insuliini kontsentratsiooni mõõdetakse μU / ml (0,04082 mg kristallilist ainet võetakse ühiku kohta). Tervislikel inimestel on tulemuseks 3-25 sellist ühikut. Lastel on lubatud vähendada kuni 3-20 ICU / ml. Rasedatel on kiirus erinev - 6-27 ICU / ml, üle 60-aastastel eakatel on see näitaja 6-35. Norma muutmine näitab tõsiste haiguste esinemist.

Kõrgendatud

Normaalse insuliini taseme pikaajaline ületav oht ähvardab pöördumatuid patoloogilisi muutusi. See tingimus tuleneb suhkru taseme langusest. Mõista insuliini ülemäärast kontsentratsiooni võib põhjustel: värisemine, higistamine, kiire südametegevus, äkilised näljahäired, iiveldus, minestamine, kooma. Hormoonide taseme tõus mõjutab järgmisi tegureid:

  • intensiivne harjutus;
  • krooniline stress;
  • maksa- ja kõhunäärmehaigused;
  • rasvumine;
  • karbohüdraadide resistentsuse rikkumine;
  • polütsüstilised munasarjad;
  • hüpofüüsi ebaõnnestumine;
  • vähk ja healoomulised neerupealiste kasvajad.

Langetatud

Insuliini kontsentratsiooni langus on tingitud stressist, intensiivsest füüsilisest koormast, närvilisest ammendumisest, suures koguses rafineeritud süsivesikute päevasest tarbimisest. Insuliinipuudus blokeerib glükoosi omastamist, suurendades selle kontsentratsiooni. Selle tulemusena on tugev janu, ärevus, äkilised näljahäired, ärrituvus ja sagedane urineerimine. Madala ja kõrge insuliini sarnaste sümptomite tõttu diagnoositakse eriuuringute abil.

Mis teeb diabeetikutele insuliini?

Hormooni valmistamiseks vajalike toorainete probleem muretseb paljusid patsiente. Inimesele toodetakse insuliini kõhunäärme ja järgmisi kunstlikult saadud aineid:

  1. Sealiha või veised - loomne päritolu. Kasutatavate pankrease loomade tootmiseks. Sealiha toorme valmistamisel on proinsuliin, mida ei saa lahutada, muutub see allergiliste reaktsioonide allikaks.
  2. Biosünteetiline või sealiha modifitseeritud - poolsünteetiline preparaat saadakse aminohapete asendamise teel. Kasu hõlmab ühilduvust inimese keha ja allergiate puudumist. Puudused - tooraine puudumine, töö keerukus, kõrge hind.
  3. Geneetiline tehnika rekombinantne - erinevalt nimetatakse "iniminsuliini", kuna see on täiesti identne loodusliku hormooniga. Aine toodetakse pärmliinide ja geneetiliselt muundatud Escherichia coli ensüümide abil.

Insuliini kasutamise juhised

Insuliini funktsioonid on inimese keha jaoks väga olulised. Kui teil on diabeet, saate arstile ja retseptile, mille ravimit tasuta apteekides või haiglates pakutakse. Tungiva vajaduse korral saab seda ilma retseptita osta, kuid annust tuleb jälgida. Üleannustamise vältimiseks lugege insuliini juhiseid.

Kasutamisnäited

Iga insuliinipreparaadi pakendil toodud juhiste kohaselt on selle kasutamise näideteks tüüp 1 suhkruhaigus (mida nimetatakse ka insuliinist sõltuvaks) ja mõnel juhul ka 2. tüüpi diabeet (insuliinist sõltuv). Need tegurid hõlmavad suukaudsete hüpoglükeemiliste ainete talumatust, ketoosarengut.

Insuliini manustamine

Määratakse ravimid pärast diagnoosi ja vereanalüüse. Suhkurtõve raviks kasutage erineva toimeajaga ravimeid: lühike ja pikk. Valik sõltub haiguse tõsidusest, patsiendi seisundist, agensi toime algusest:

  1. Ravim on lühikese toimeajaga subkutaanseks, intravenoosseks või intramuskulaarseks manustamiseks. Erineb kiire lühitoimelise suhkrut vähendav toime, lisatakse 15-20 minutit enne sööki mitu korda päevas. Mõju ilmneb poole tunni jooksul, maksimaalne - kaks tundi, kokku umbes kuus tundi.
  2. Pikk või pikaajaline toime - see mõjutab 10-36 tundi, mis võimaldab vähendada süstide päevast arvu. Suspensioone manustatakse intramuskulaarselt või subkutaanselt, kuid mitte intravenoosselt.

Sisselogimise hõlbustamiseks ja vastavuse saavutamiseks kasutatud süstaldega. Üks jaotus vastab teatud arvule üksustele. Insuliinravi reeglid:

  • Hoidke preparaadid külmkapis ja need alustatakse - toatemperatuuril soojendage enne sisenemist, sest jahedad toimivad nõrgemad;
  • parem on süstida lühiajalise hormooni all kõhu naha - süstida reide või tuharaliigutusega toimib aeglasemalt, veelgi hullem - õlal;
  • pikatoimeline ravim süstitakse vasakule või paremale reitele;
  • teevad kõik pildid teises piirkonnas;
  • insuliini süstidega hõivata kogu kehaosa kogu ala - nii saab valu ja hülgamisvõimalusi vältida;
  • viimase süste taganemise kohast minimaalselt 2 cm;
  • ärge ravige nahka alkoholiga, see hävitab insuliini;
  • kui vedelik voolab välja, on nõel sisestatud valesti - peate hoidma seda 45-60 kraadi nurga all.

Kõrvaltoimed

Ravimite subkutaanse manustamise korral võib süstimiskohas tekkida lipodüstroofia. Väga harva esinevad allergilised reaktsioonid. Kui need esinevad, on vaja sümptomaatilist ravi ja ravivahendi väljavahetamist. Vastunäidustused on järgmised:

  • äge hepatiit, maksatsirroos, ikterus, pankreatiit;
  • nefriit, urolitiaas;
  • dekompenseeritud südamehaigused.

Insuliini hind

Insuliini maksumus sõltub tootja tüübist, ravimi tüübist (lühike / pikk tegevusaeg, tooraine) ja pakendi maht. 50 ml raviminsuliini hind on Moskvas ja Peterburis ligikaudu 150 rubla. Insumani süstlaga-1200 süstlaga, Protafani suspensioon on umbes 930 rubla hinnaga. Kui palju insuliini kulusid mõjutab ka apteegi tase.

Video

Artiklis esitatud teave on ainult informatiivsel eesmärgil. Artikli materjalid ei nõua enesehooldust. Ainult kvalifitseeritud arst võib diagnoosida ja nõustada ravi, lähtudes konkreetse patsiendi individuaalsetest omadustest.

Veel Artikleid Diabeedi

Diabeedi tüsistused

Diagnostika

Suhkruhaiguse tüsistused esinevad patsientidel, kes ei järgi patoloogia ravi soovitusi, hoolimata nende tervisest. Varem või hiljem ilmnevad soovimatud tagajärjed inimestele, kes ei jälgi nende dieeti, ega ka insuliini annuste hilinemist, olenemata haiguse tüübist.

Kliinilistest uuringutest lähtudes ületavad naistel rasestumisperioodi jooksul glükoosisisalduse näitajad enamikul juhtudest lubatud piire. See seisund on seotud sel ajal iseloomulike hormonaalsete muutustega.

Inimesed, kellel on nõrgenenud süsivesikute imendumine, peavad oma dieeti rangelt jälgima. Sööma ja juua ainult seda, mis ei kahjusta. Kuid patsiendi toitumine peab olema tasakaalus.